Discrete reaction-diffusion equation: an application

Zdeněk Pospíšil

Masaryk University, Department of Mathematics and Statistics
Kotlářská 2, 611 37 Brno
Czech Republic
pospisil@math.muni.cz

The contribution deals with a discrete counterpart of the reaction-diffusion PDE, that is, with the system

\[u_i(t + 1) = r_i u_i(t) + \rho_i v_i(t) + \sum_{j=1}^{k} c_{ij} (r_j u_j(t) + \rho_j v_j(t) - r_i u_i(t) - \rho_i v_i(t)), \]

\[v_i(t + 1) = \sigma_i u_i(t) + s_i v_i(t) + \sum_{j=1}^{k} d_{ij} (\sigma_j u_j(t) + s_j v_j(t) - \sigma_i u_i(t) - s_i v_i(t)). \]

The existence and stability of the “spatially homogeneous” solution is examined and an occurrence of a Turing instability is discussed.

The system can be considered as a model of a “spread of interacting ideas”. Hence, it finds an application in the generative historiography (or cliodynamics) and it may enrich a non-complete archaeological or textual record with a complementary insight.