Geometry and Global Stability of Higher Dimensional Monotone Maps

E. Cabral Balreira

Trinity University
Department of Mathematics
One Trinity Place
San Antonio, TX 78212, USA
ebalreir@trinity.edu

We discuss a new notion of monotonicity for maps on \mathbb{R}^k, called normal monotonicity, that has recently been introduced in [1] and builds on previous work of the authors in [2]. The new definition of monotonicity extends the classical notion of competitive planar maps of Smith [3] and geometrically captures the dynamics of a competitive system in higher dimensions. Namely, a map $F : \mathbb{R}^k \to \mathbb{R}^k$ is monotone at p if for any hypersurface Γ containing p with $\eta(\Gamma(p)) > 0$, we have $\eta(F(\Gamma)) > 0$. Here η denotes the normal vector at a hypersurface. Our main result is to show global stability for monotone maps that have a unique coexistence fixed point.

\(^1\)Joint work with Saber Elaydi and Rafael Luís.